
Topology Chapter 2 Lecture Notes Fall 2023

§12Topological Spaces
Definition A topology on a set X is a collection T of subsets of X having the following
properties:

(1) ∅ and X are in T .

(2) The union of the elements of any subcollection of T is in T .

(3) The intersection of the elements of any finite subcollection of T is in T .

A set X for which a topology T has been specified is called a topological space.

Properly speaking, a topological space is an ordered pair (X,T ) consisting of a set X and a
topology T on X, but we often omit specific mention of T if no confusion will arise.

Definition Let X be a topological space with topology T . A subset U of X is called an open
set of X if U ∈ T , i.e. U belongs to the collection T . Using this terminology, one can say that
X is a topological space if

(1) ∅ and X are open.

(2) Arbitrary union of open sets is open.

(3) Any finite intersection of open sets is open.

Examples

1. Let X be a three-element set, X = {a, b, c}. There are many possible topologies on X,some
of which are indicated schematically in Figure 12.1. The diagram in the upper right-hand
corner indicates the topology in which the open sets are X, ∅, {a, b}, {b}, and {b, c}. The
topology in the upper left-hand corner contains only X and ∅, while the topology in the
lower right-hand corner contains every subset of X. You can get other topologies on X by
permuting a, b, and c.
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general. This is always the problem when one is trying to formulate a new mathe-
matical concept, to decide how general its definition should be. The definition finally
settled on may seem a bit abstract, but as you work through the various ways of con-
structing topological spaces, you will get a better feeling for what the concept means.

Definition. A topology on a set X is a collection T of subsets of X having the
following properties:

(1) ∅ and X are in T .

(2) The union of the elements of any subcollection of T is in T .

(3) The intersection of the elements of any finite subcollection of T is in T .
A set X for which a topology T has been specified is called a topological space.

Properly speaking, a topological space is an ordered pair (X, T ) consisting of a
set X and a topology T on X , but we often omit specific mention of T if no confusion
will arise.

If X is a topological space with topology T , we say that a subset U of X is an
open set of X if U belongs to the collection T . Using this terminology, one can say
that a topological space is a set X together with a collection of subsets of X , called
open sets, such that ∅ and X are both open, and such that arbitrary unions and finite
intersections of open sets are open.

EXAMPLE 1. Let X be a three-element set, X = {a, b, c}. There are many possible
topologies on X , some of which are indicated schematically in Figure 12.1. The diagram
in the upper right-hand corner indicates the topology in which the open sets are X , ∅,
{a, b}, {b}, and {b, c}. The topology in the upper left-hand corner contains only X and ∅,
while the topology in the lower right-hand corner contains every subset of X . You can get
other topologies on X by permuting a, b, and c.

a b c a b c a b c

Figure 12.1

From this example, you can see that even a three-element set has many different
topologies. But not every collection of subsets of X is a topology on X . Neither of the
collections indicated in Figure 12.2 is a topology, for instance.
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a b c a b c

Figure 12.2

EXAMPLE 2. If X is any set, the collection of all subsets of X is a topology on X ; it is
called the discrete topology. The collection consisting of X and ∅ only is also a topology
on X ; we shall call it the indiscrete topology, or the trivial topology.

EXAMPLE 3. Let X be a set; let T f be the collection of all subsets U of X such that X−U
either is finite or is all of X . Then T f is a topology on X , called the finite complement
topology. Both X and ∅ are in T f , since X − X is finite and X −∅ is all of X . If {Uα} is
an indexed family of nonempty elements of T f , to show that

⋃
Uα is in T f , we compute

X −
⋃

Uα =
⋂

(X −Uα).

The latter set is finite because each set X − Uα is finite. If U1, . . . , Un are nonempty
elements of T f , to show that

⋂
Ui is in T f , we compute

X −
n⋂

i=1

Ui =
n⋃

i=1

(X −Ui ).

The latter set is a finite union of finite sets and, therefore, finite.

EXAMPLE 4. Let X be a set; let Tc be the collection of all subsets U of X such that
X −U either is countable or is all of X . Then Tc is a topology on X , as you can check.

Definition. Suppose that T and T ′ are two topologies on a given set X . If T ′ ⊃ T ,
we say that T ′ is finer than T ; if T ′ properly contains T , we say that T ′ is strictly
finer than T . We also say that T is coarser than T ′, or strictly coarser, in these two
respective situations. We say T is comparable with T ′ if either T ′ ⊃ T or T ⊃ T ′.

This terminology is suggested by thinking of a topological space as being some-
thing like a truckload full of gravel—the pebbles and all unions of collections of peb-
bles being the open sets. If now we smash the pebbles into smaller ones, the collection
of open sets has been enlarged, and the topology, like the gravel, is said to have been
made finer by the operation.

Two topologies on X need not be comparable, of course. In Figure 12.1 preced-
ing, the topology in the upper right-hand corner is strictly finer than each of the three
topologies in the first column and strictly coarser than each of the other topologies in
the third column. But it is not comparable with any of the topologies in the second
column.

Other terminology is sometimes used for this concept. If T ′ ⊃ T , some math-
ematicians would say that T ′ is larger than T , and T is smaller than T ′. This is
certainly acceptable terminology, if not as vivid as the words “finer” and “coarser.”
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2. Let X be a set and let T = P(X) = {U | U ⊂ X} be the collection of all subsets of X,
called the power set of X. Then T is a topology on X and it is called the discrete topology
on X.

3. Let X be a set and let T = {∅, X} consist of ∅ and X only. Then T is a topology on X
and it is called the trivial topology on X.

4. Let X = R and let

Tf = {U | X \ U is either finite subset or all of X}.

Then Tf is a topology on X, called the the finite complement topology.

5. Let X = En and let T = {U | ∀ x ∈ U, ∃ ε = ε(x) > 0 s.t. Bε(x) ⊂ U}, where Bε(x) =
{y ∈ En | d(x, y) < ε} denotes the Euclidean ball with center x and radius ε. Then T is a
topology on En and it is called the usual or standard topology on En.

Definition Suppose that T and T ′ are two topologies on a given set X. If T ′ ⊃ T , we say that
T ′ is finer (or larger) than T ; if T ′ properly contains T , we say that T ′ is strictly finer than
T . We also say that T ′ is coaser (or smaller) than T , or strictly coarser,in these two respective
situations. We say T is comparable with T ′ if either T ′ ⊃ T or T ⊃ T ′.

§13Basis for a Topology

Definition If X is a set, a basis for a topology on X is a collection B of subsets of X (called
basis elements) such that

(1) For each x ∈ X, there is at least one basis element B containing x =⇒
⋃
B∈B

B = X.

(2) If x belongs to the intersection of two basis elements B1 and B2, then there is a basis element
B3 containing x such that

B3 ⊆ B1 ∩B2

i.e. If B1, B1 ∈ B satisfy that B1∩B2 ̸= ∅, then there is a B3 ∈ B such that B3 ⊆ B1∩B2.

Definition If B is a basis for a topology on X, then the topology T generated by B is defined
by

T = {U | ∀x ∈ U, ∃B ∈ B s.t. x ∈ B ⊆ U}
that is, U is an open subset of X (or U ∈ T ) if for each x ∈ U, there is a basis element B ∈ B
such that x ∈ B and B ⊆ U.

Remark Note that

� if B ∈ B =⇒ B ∈ T , i.e. all basis elements are open in X under this definition, so that
B ⊆ T .

Page 2



Topology Chapter 2 Lecture Notes(Continued)

� if U ∈ T , then for each x ∈ U, there exists a Bx ∈ B such that x ∈ Bx ⊆ U and

U =
⋃
x∈U

{x} ⊆
⋃
x∈U

Bx ⊆
⋃
x∈U

U = U =⇒ U =
⋃
x∈U

Bx

� ∅ ∈ T since it satisfies the defining condition of openness vacuously.

� X ∈ T since for each x ∈ X there is a basis element containing x and contained in X.

� if {Uα}α∈J is a collection of elements of T and if U = ∪α∈JUα, then U ∈ T since for each
x ∈ U, there is an index α such that x ∈ Uα and since Uα ∈ T there is a basis element B
such that

x ∈ B ⊆ Uα =⇒ x ∈ B and B ⊆ U =⇒ U ∈ T

� if U1 and U2 are elements of T , then U1∩U2 ∈ T since for any x ∈ U1∩U2, there exist basis
elements B1, B2 containing x such that B1 ⊂ U1 and B2 ⊂ U2. Also, by the second condition
for a basis, there exists a basis element B3 containing x such that x ∈ B3 ⊂ U1 ∩ U2 (see
Figure 13.3) which implies that U1 ∩ U2 ∈ T , by definition.

x

B2

B1

B3

U1

U2

Figure 13.3

� if U = U1 ∩ · · · ∩ Un is any finite intersection of n elements of T , then U ∈ T since this
is trivial for the case when n = 1, and if we suppose this is true for the intersection of any
n−1 elements then it is true for the intersection of any n elements since U1∩· · ·∩Un−1 ∈ T
by hypothesis and

(U1 ∩ · · · ∩ Un) = (U1 ∩ · · · ∩ Un−1) ∩ Un ∈ T

by the result just proved.

Hence the collection T is indeed a topology on X.

Example 1. Let B be the collection of all circular regions (interiors of circles) in the plane.
Then B satisfies both conditions for a basis. The second condition is illustrated in Figure 13.1.
In the topology generated by B, a subset U of the plane is open if every x in U lies in some
circular region contained in U.

Example 2. Let B′ be the collection of all rectangular regions (interiors of rectangles) in the
plane, where the rectangles have sides parallel to the coordinate axes. Then B′ satisfies both
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Many mathematicians use the words “weaker” and “stronger” in this context. Un-
fortunately, some of them (particularly analysts) are apt to say that T ′ is stronger
than T if T ′ ⊃ T , while others (particularly topologists) are apt to say that T ′ is
weaker than T in the same situation! If you run across the terms “strong topology”
or “weak topology” in some book, you will have to decide from the context which
inclusion is meant. We shall not use these terms in this book.

§13 Basis for a Topology

For each of the examples in the preceding section, we were able to specify the topology
by describing the entire collection T of open sets. Usually this is too difficult. In
most cases, one specifies instead a smaller collection of subsets of X and defines the
topology in terms of that.

Definition. If X is a set, a basis for a topology on X is a collection B of subsets of X
(called basis elements) such that

(1) For each x ∈ X , there is at least one basis element B containing x .

(2) If x belongs to the intersection of two basis elements B1 and B2, then there is a
basis element B3 containing x such that B3 ⊂ B1 ∩ B2.

If B satisfies these two conditions, then we define the topology T generated by B as
follows: A subset U of X is said to be open in X (that is, to be an element of T ) if for
each x ∈ U , there is a basis element B ∈ B such that x ∈ B and B ⊂ U . Note that
each basis element is itself an element of T .

We will check shortly that the collection T is indeed a topology on X . But first let
us consider some examples.

EXAMPLE 1. Let B be the collection of all circular regions (interiors of circles) in the
plane. Then B satisfies both conditions for a basis. The second condition is illustrated in
Figure 13.1. In the topology generated by B, a subset U of the plane is open if every x
in U lies in some circular region contained in U .

x

B1

B3
B2

Figure 13.1

x

B'1 B'2

Figure 13.2
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conditions for a basis. The second condition is illustrated in Figure 13.2; in this case, the
condition is trivial, because the intersection of any two basis elements is itself a basis element
(or empty). As we shall see later, the basis B′ generates the same topology on the plane as the
basis B given in the preceding example.

Example 3. If X is any set, the collection of all one-point subsets of X is a basis for the discrete
topology on X.

Another way of describing the topology generated by a basis is given in the following lemma:

Lemma 13.1 Let X be a set; let B be a basis for a topology T on X. Then T equals the
collection of all unions of elements of B.

Proof Given any collection of elements of B, they are also elements of T , Because T is a
topology, their union is in T . Conversely, given U ∈ T choose for each x ∈ U an element Bx of
B such that x ∈ Bx ⊂ U. Then U = ∪x∈UBx, so U equals a union of elements of B.

This lemma states that every open set U in X can be expressed as a union of basis elements.
This expression for U is not, however, unique. Thus the use of the term “basis” in topology
differs drastically from its use in linear algebra, where the equation expressing a given vector as
a linear combination of basis vectors is unique.

We have described in two different ways how to go from a basis to the topology it generates.
Sometimes we need to go in the reverse direction, from a topology to a basis generating it. Here
is one way of obtaining a basis for a given topology; we shall use it frequently.

Lemma 13.2 Let X be a topological space. Suppose that C is a collection of open sets of X such
that for each open set U of X and each x ∈ U, there is an element C of C such that x ∈ C ⊂ U.
Then C is a basis for the topology of X.

Proof We must show that C is a basis. The first condition for a basis is easy: Given x ∈ X,
since X is itself an open set, there is by hypothesis an element C of C such that x ∈ C ⊂ X. To
check the second condition, let x belong to C1 ∩ C2, where C1 and C2 are elements of C . Since
C1 and C2 are open, so is C1∩C2. Therefore, there exists by hypothesis an element C3 in C such
that x ∈ C3 ⊂ C1 ∩ C2.

Let T be the collection of open sets of X; we must show that the topology T ′ generated by
C equals the topology T . First, note that if U belongs to T and if x ∈ U, then there is by
hypothesis an element C of C such that x ∈ C ⊂ U. It follows that U belongs to the topology T ′,
by definition. Conversely, if W belongs to the topology T ′, then W equals a union of elements
of C , by the preceding lemma. Since each element of C belongs to T and T is a topology, W
also belongs to T .

When topologies are given by bases, it is useful to have a criterion in terms of the bases for
determining whether one topology is finer than another. One such criterion is the following:
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Lemma 13.3 Let B and B′ be bases for the topologies T and T ′, respectively, on X. Then the
following are equivalent:

(1) T ′ is finer than T .

(2) For each x ∈ X and each basis element B ∈ B containing x, there is a basis element
B′ ∈ B′ such that x ∈ B′ ⊆ B.

Proof (2) =⇒ (1). Given an element U ∈ T , we wish to show that U ∈ T ′. For any x ∈ U,
since B generates T , there is an element B ∈ B such that x ∈ B ⊆ U. Condition (2) tells
us there exists an element B′ ∈ B′ such that x ∈ B′ ⊆ B. Then x ∈ B′ ⊆ U, so U ∈ T ′, by
definition.

(1) =⇒ (2) For each x ∈ X and each basis element B ∈ B containing x, since B ∈ T by
definition and T ⊆ T ′ by condition (1), we have B ∈ T ′. Since T ′ is generated by B′, there is
an element B′ ∈ B′ such that x ∈ B′ ⊆ B.

Example 4. One can now see that the collection B of all circular regions in the plane generates
the same topology as the collection ′ of all rectangular regions; Figure 13.4 illustrates the proof.
We shall treat this example more formally when we study metric spaces.

B'
B

x

B'Bx

Figure 13.4

Definition A subbasis S for a topology on X is a collection of subsets of X whose union equals
X. The topology generated by the subbasis S is defined to be the collection T of all unions of
finite intersections of elements of S .

Note that if B = {
m⋂
i=1

Si | Si ∈ S , m ≥ 1} is the collection of all finite intersections of elements

of S , then B is a basis since X =
⋃
S∈S

S ⊂
⋃
B∈B

B ⊂ X =⇒
⋃
B∈B

B = X and

if B1 = S1∩· · ·∩Sm, B2 = S ′
1∩· · ·∩S ′

n ∈ B =⇒ B1∩B2 = (S1 ∩ · · · ∩ Sm)∩(S ′
1 ∩ · · · ∩ S ′

n) ∈ B

Hence, by Lemma 13.1, the collection T of all unions of elements of B is a topology.
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§16The Subspace Topology

Definition Let X be a topological space with topology T and let Y be a subset of X. Then the
collection

TY = {Y ∩ U | U ∈ T }

is a topology on Y, called the subspace or induced topology. With this topology, Y is called a
subspace of X; its open sets consists of all intersections of open sets of X with Y.

Since
∅ = Y ∩ ∅ and Y = Y ∩X =⇒ ∅, Y ∈ TY ,

n⋂
i=1

(Ui ∩ Y ) =

(
n⋂

i=1

Ui

)
∩ Y ∈ TY , and

⋃
α∈J

(Uα ∩ Y ) =

(⋃
α∈J

Uα

)
∩ Y ∈ TY

TY is a topology on Y.

Lemma 16.1 If B is a basis for the topology of X then the collection

BY = {B ∩ Y | B ∈ B}

is a basis for the subspace topology on Y.

Proof Given U open in X and given y ∈ U ∩ Y, we can choose an element B of B such that
y ∈ B ⊂ U. Then y ∈ B ∩ Y ⊂ U ∩ Y. It follows from Lemma 13.2 that BY is a basis for the
subspace topology on Y.

Lemma 16.2 Let Y be a subspace of X. If U is open in Y and Y is open in X, then U is open
in X.

Proof Since U is open in Y, U = Y ∩V for some set V open in X. Since Y and V are both open
in X, so is Y ∩ V.

Example Let X = R be the real line with the usual topology generated by the basis {(a, b) | a <
b ∈ R} and let Y = [0, 1]. Then the basis for the subspace topology TY consists of the following:

(a, b) ∩ Y =



(a, b) if 0 < a < b < 1

[0, b) if a < 0 < b < 1

(a, 1] if 0 < a < 1 < b

∅ if b < 0 or 1 < a

[0, 1] if a < 0 < 1 < b

Example Let X = R be the real line with the usual topology as above, and let Y = [0, 1)∪{2}.
Note that the one-point set {2} and [0, 1) are open in the subspace topology TY .

§17Closed Sets and Limit Points

Definition Let X be a topological space. A subset F of X is called an closed set of X if
F c = X \ F ∈ T , i.e. the complement subset of F in X is an open set of X.

The collection of closed subsets of a space X has properties similar to those satisfied by the
collection of open subsets of X:

Theorem 17.1 Let X be a topological space. Then the following conditions hold:
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(1) ∅ and X are closed.

(2) Arbitrary intersection of closed sets is closed.

(3) Any finite union of closed sets is closed.

Proof (1) ∅ and X are closed because they are the complements of the open sets X and ∅,
respectively.

(2) Given a collection of closed sets {Aα}α∈J , we apply DeMorgan’s law,

X \
⋂
α∈J

Aα =
⋃
α∈J

(X \ Aα) .

Since the sets X \Aα are open by definition, the right side of this equation represents an arbitrary
union of open sets, and is thus open. Therefore, ∩α∈JAα is closed.

(3) Similarly, if Ai is closed for i = 1, . . . , n, consider the equation

X \
n⋃

i=1

Ai =
n⋂

i=1

(X \ Ai) .

The set on the right side of this equation is a finite intersection of open sets and is therefore
open. Hence ∪n

i=1Ai is closed.

Theorem 17.2 Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals
the intersection of a closed set of X with Y.

Proof Assume that A = C∩Y, where C is closed inX. (See Figure 17.1.) ThenX\C is open inX,
so that (X \ C)∩Y is open in Y, by definition of the subspace topology. But(X \ C)∩Y = Y \A
Hence Y \ A is open in Y, so that A is closed in Y.

Conversely, assume that A is closed in Y. (See Figure 17.2.) Then Y \A is open in Y, so that by
definition it equals the intersection of an open set U of X with Y. The set X \ U is closed in X,
and A = Y ∩ (X \ U) so that A equals the intersection of a closed set of X with Y, as desired.

A

C

X

Y

Figure 17.1

Y

X

A

U

Figure 17.2

A set A that is closed in the subspace Y may or may not be closed in the larger space X. As
was the case with open sets, there is a criterion for A to be closed in X as follows.
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Theorem 17.3 Let Y be a subspace of X. If A is closed in Y and Y is closed in X, then A is
closed in X.

Definition Let X be a topological space. A subset U is called a open neighborhood of p if U
is an open set containing p. Note that if U is an open subset of X, then it is a neighborhood of
each point p ∈ U.

Definition Let A be a subset of a topological space X. A point p of X is called a limit point
(or accumulation point) of A if every open neighborhood U of p contains at least one point of
A \ {p}, i.e.

U ∩ A \ {p} ≠ ∅.

Let A′ denote the set of limit points of A. Note that a limit point of A may not be a point in A.

Examples

1. Let X = R and let A = {1/n | n ∈ N}. Then A has exactly one limit point, namely the
origin.

2. Let X = R and let A = [0, 1). Then [0, 1] is the set of limit points of A.

3. Let X = E3 and let A = {(x, y, z) | x, y, z ∈ Q}. Then E3 is the set of limit points of A.

4. Let X = E3 and let A = {(x, y, z) | x, y, z ∈ Z}. Then A does not have any limit points.

5. Let X = R with the finite complement topology Tf . If we take A to be an infinite subset
of X, then every point of X is a limit point of A. On the other hand a finite subset of X
has no limit points in this topology.

Corollary 17.7 A set is closed if and only if it contains all of its limit points.

Proof If A is closed, then X \ A is open. Since

A ∩ (X \ A) \ {p} = ∅ ∀ p ∈ X \ A,

X \ A does not contain any limit point of A. Therefore A contains all of its limit points.

Conversely, suppose A contains all of its limit points and let p ∈ X \ A. Since p is not a limit
point of A, there is a neighborhood U of p such that

U ∩ A = ∅ =⇒ p ∈ U ⊂ X \ A

This implies that X \A is a neighborhood of each of its points and consequently open. Therefore
A is closed.

Definition Given a subset A of a topological space X, the interior of A is defined as the union
of all open sets contained in A, and the closure of A is defined as the intersection of all closed
sets containing A.

The interior of A is denoted by IntA and the closure of A is denoted by ClA or by Ā. Obviously
IntA is an open set and Ā is a closed set; furthermore,

IntA ⊂ A ⊂ Ā.

If A is open, A = IntA; while if A is closed, A = Ā, that is, A is closed if and only if it is equal
to its closure.

Theorem 17.4 If Y is a subspace of X, A is a subset of Y and Ā denotes the closure of A in X,
then the closure of A in Y equals Ā ∩ Y.
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Proof Let B denote the closure of A in Y. The set Ā is closed in X, so Ā ∩ Y is closed in Y by
Theorem 17.2. Since Ā ∩ Y contains A, and since by definition B equals the intersection of all
closed subsets of Y containing A, we must have B ⊂ Ā ∩ Y.

On the other hand, we know that B is closed in Y. Hence by Theorem 17.2, B = C ∩Y for some
set C closed in X. Then C is a closed set of X containing A; because Ā is the intersection of all
such closed sets, we conclude that Ā ⊂ C. Then

(
Ā ∩ Y

)
⊂ (C ∩ Y ) = B.

Theorem 17.5 Let A be a subset of the topological space X.

(a) Then x ∈ Ā if and only if every open set U containing x intersects A.

(b) Supposing the topology of X is given by a basis, then x ∈ Ā if and only if every basis
element B containing x intersects A.

Proof Consider the statement in (a). It is a statement of the form P ⇐⇒ Q. Let us trans-
form each implication to its contrapositive, thereby obtaining the logically equivalent statement
(notP ) ⇐⇒ (notQ) . Written out, it is the following:

x /∈ Ā ⇐⇒ there exists an open set U containing x that does not intersect A.

In this form, our theorem is easy to prove. If x is not in Ā, the set U = X \ Ā is an open set
containing x that does not intersect A, as desired. Conversely, if there exists an open set U
containing x which does not intersect A, then X \ U is a closed set containing A. By definition
of the closure Ā, the set X \ U must contain Ā; therefore, x cannot be in Ā.

Statement (b) follows readily. If every open set containing x intersects A, so does every basis
element B containing x, because B is an open set. Conversely, if every basis element containing
x intersects A, so does every open set U containing x, because U contains a basis element that
contains x.

Theorem 17.6 Let A be a subset of the topological space X; let A′ be the set of all limit points
of A. Then

Ā = A ∪ A′.

Proof If x is in A′, every neighborhood of x intersects A (in a point different from x). Therefore,
by Theorem 17.5, x belongs to Ā. Hence A′ ⊂ Ā. Since by definition A ⊂ Ā, it follows that
A ∪ A′ ⊂ Ā.

To demonstrate the reverse inclusion, we let x be a point of Ā and show that x ∈ A ∪ A′. If x
happens to lie in A, it is trivial that x ∈ A ∪ A′; suppose that x does not lie in A. Since x ∈ Ā,
we know that every neighborhood U of x intersects A; because x /∈ A the set U must intersect
A in a point different from x. Then x ∈ A′ so that x ∈ A ∪ A′ as desired.

Definition Let A be a subset of a topological space X. The frontier (or boundary) of A, usually
denoted ∂A, is the intersection of the closure of A with the closure of X \ A, i.e.

∂A = Ā ∩X \ A

Definition A topological space X is called a Hausdorff space if for each pair x1, x2 of distinct
points of X, there exist neighborhoods U1 and U2 of x1 and x2, respectively, that are disjoint.

Theorem 17.8 Every finite point set in a Hausdorff space X is closed.

Proof It suffices to show that every one-point set {x0} is closed. If x s a point of X different
from x0, then x and x0 have disjoint neighborhoods U and V, respectively. Since U does not
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intersect {x0}, the point x cannot belong to the closure of the set {x0}. As a result, the closure
of the set {x0} is {x0} itself, so that it is closed.

Definition In an arbitrary topological space, one says that a sequence x1, x2, . . . of points of
the space X converges to the point x of X provided that, corresponding to each neighborhood
U of x, there is a positive integer N such that xn ∈ U for all n ≥ N.

Theorem 17.10 If X is a Hausdorff space, then a sequence of points of X converges to at most
one point of X.

Proof Suppose that xn is a sequence of points of X that converges to x. If y ̸= x, let U and V
be disjoint neighborhoods of x and y, respectively. Since U contains xn for all but finitely many
values of n, the set V cannot. Therefore, xn cannot converge to y.

§18Continuous Functions

Definition Let X and Y be topological spaces. A function f : X → Y is continuous on X if for
each open subset V of Y, the set f−1(V ) is an open subset of X.

Remark Let us note that if the topology of the range space Y is given by a basis B, then to
prove continuity of f it suffices to show that the inverse image of every basis element is open:
The arbitrary open set V of Y can be written as a union of basis elements

V =
⋃
α∈J

Bα.

Then
f−1(V ) =

⋃
α∈J

f−1 (Bα) ,

so that f−1(V ) is open if each set f−1 (Bα) is open.

If the topology on Y is given by a subbasis S , to prove continuity of f it will even suffice to
show that the inverse image of each subbasis element is open: The arbitrary basis element B for
Y can be written as a finite intersection S1 ∩ · · · ∩ Sn of subbasis elements; it follows from the
equation

f−1(B) = f−1(S1) ∩ · · · ∩ f−1(Sn)

that the inverse image of every basis element is open.

Definition A function h : X → Y is called a homeomorphism if it is one-to-one, onto, continuous
and has a continuous inverse h−1 : Y → X. When such a function exists, X and Y are called
homeomorphic (or topologically equivalent) spaces.

The map f : X → Y is called a topological imbedding, or simply an imbedding, of X in Y if
f : X → Y is an injective continuous map from X into Y.

Example Let the real line R and the complex plane C ≡ R2 be given the usual topologies, let
X = [0, 1) ⊂ R and Y = C = {z = x+ iy ∈ C | x, y ∈ R, x2 + y2 = 1} be given respectively the
subspace topologies, and let f : [0, 1) → C be defined by

f(t) = e2πit = cos 2πt+ i sin 2πt for each t ∈ [0, 1) =⇒ f is one-to-one and onto.

Note that for each open disk Br(p) = {z ∈ C | ∥z−p∥ < r} in C, since Br(p)∩C is open in C and
f−1(Br(p)∩C) is open in [0, 1), f : [0, 1) → C is continuous. However, its inverse f−1 : C → [0, 1)

is not continuous since for example
(
f−1
)−1

([0, 1/2)) = {p ∈ C | f−1(p) ∈ [0, 1)} is not open in
(the subspace) C while [0, 1/2) is open in (the subspace) [0, 1)).
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Theorem Let X, Y and Z be topological spaces. If f : X → Y and g : Y → Z are continuous
functions, then the composition g ◦ f : X → Z is a continuous function.

Proof Let O be an open set in Z. Since

(g ◦ f)−1(O) = f−1
(
g−1(O)

)
and g−1(O) is open in Y because g is continuous, so f−1

(
g−1(O)

)
must be open in X by the

continuity of f. Therefore g ◦ f : X → Z is continuous.

Theorem Suppose f : X → Y is continuous, and let A ⊆ X have the subspace topology. Then
the restriction f |A : A → Y is continuous.

Proof Let O be an open set in Y and notice that

(f |A)
−1 (O) = A ∩ f−1(O).

Since f is continuous, f−1(O) is open in X. Therefore (f |A)
−1 (O) is open in the subspace

topology on A, and the continuity of f |A follows from the preceding Theorem.

Definition The map 1X : X → X, defined by 1X(x) = x for each x ∈ X, is called the identity
map of X. If we restrict 1X to a subspace A of X we obtain the inclusion map i : A → X.

Theorem 18.1 Let X and Y be topological spaces; let f : X → Y. Then the following are
equivalent:

(1) f : X → Y is continuous.

(2) If β is a base for the topology of Y, the inverse image of every member of β is open in X.

(3) For every subset A of X, one has f(Ā) ⊆ f(A).

(4) For every subset B of Y, the set f−1(B) ⊆ f−1(B̄)

(5) The inverse image of each closed set in Y is closed in X.

Proof

[(1) ⇒ (2)] For each B ∈ β, since B is an open set in the topology generated by β, f−1(B) is
open in X.

[(2) ⇒ (3)] Let A be a subset of X. Since Ā = A∪A′ and f(A) ⊆ f(A) = f(A)∪f(A)′, it suffices
to show that if f(x) ∈ f(Ā), x ∈ Ā \ A and if f(x) /∈ f(A), then f(x) ∈ f(A)′.

Suppose that f(x) ∈ f(Ā), x ∈ Ā \ A, f(x) /∈ f(A) and N is an open neighborhood of f(x) in
Y. Since β is a base for the topology of Y, there exists a basis element (an open subset) B in β
such that

f(x) ∈ B ⊆ N =⇒ x ∈ f−1(B) ⊆ f−1(N).

Assuming (2), the set f−1(B) is open in X and is therefore an open neighborhood of x. Also
since

x ∈ A′ =⇒ f−1(B) ∩ A ̸= ∅ =⇒ B ∩ f(A) ̸= ∅
and since

B ∩ f(A) ⊆ N ∩ f(A) =⇒ N ∩ f(A) \ {f(x)} = N ∩ f(A) ̸= ∅ =⇒ f(x) ∈ f(A)′ ⊂ f(A)

This completes the proof of (3).

[(3) ⇒ (4)] For any subset B of Y, since f−1(B) is a subset of X and by assuming (3), we have

f
(
f−1(B)

)
⊆f(f−1(B)) ⊆ B̄ =⇒ f−1(B) ⊆ f−1(B̄)
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[(4) ⇒ (5)] If B is a closed subset of Y, since B̄ = B and by assuming (4), we have

f−1(B) ⊆f−1(B̄) = f−1(B) ⊆ f−1(B) =⇒ f−1(B) = f−1(B)

and thus f−1(B) is closed in X.

[(5) ⇒ (1)] For each open set O of Y, since

X \ f−1(O) = {x ∈ X | f(x) /∈ O} = {x ∈ X | f(x) ∈ Y \O} = f−1(Y \O),

Y \O is closed in Y and by assuming (5), we have f−1(Y \O) = X \ f−1(O) is closed in X and
thus f−1(O) is open in X. This shows that f : X → Y is continuous.

§15 The Product Topology on X × Y

Definition Let X and Y be topological spaces. The product topology on X × Y is defined to
be the topology generated by the basis

B = {U × V | U is open in X and V is open in Y }

Since

� X × Y ∈ B =⇒
⋃

U×V ∈B

U × V = X × Y,

� if U1 × V1, U2 × V2 ∈ B, then U1 ∩ U2 and V1 ∩ V2 are open in X and Y, respectively, and

(U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2)× (V1 ∩ V2) ∈ B as in Figure 15.1,

B is a basis.

U1
U2

V1

V2

Figure 15.1

The set X × Y, when equipped with the product topology, is called a product space.

In general, if X1, X2, . . . , Xn are topological spaces, the product topology on X1×X2×· · ·×Xn

is the topology generated by the base B = {U1 × U2 × · · · × Un | Ui is open in Xi, 1 ≤ i ≤ n}.
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For each 1 ≤ i ≤ n, the function πi : X1×· · ·×Xi×· · ·×Xn → Xi defined by πi(x1, · · · , xi, · · · , xn) =
xi is called the projection of X1 × · · · ×Xn onto its ith factor. Note that for each open subset
Ui of Xi, since π−1

i (Ui) = X1 × · · · × Ui × · · · × Xn is open in X1 × · · · × Xn, the projection
πi : X1 × · · · ×Xn → Xi is continuous .

Theorem 15.2 The collection

S = {π−1
1 (U) | U open inX} ∪ {π−1

2 (V ) | V open inY }

is a subbasis for the product topology on X × Y.

XX

(V )

U

V π2
−1

(U )π1
−1

Figure 15.2

Proof Let T denote the product topology on X × Y ; let T ′ be the topology generated by
S . Because every element of S belongs to T , so do arbitrary unions of finite intersections of
elements of S . Thus T ′ ⊂ T .

On the other hand, every basis element U × V for the topology T is a finite intersection of
elements of S since

U × V = π−1
1 (U) ∩ π−1

2 (V ).

Therefore, U × V belongs to T ′, so that T ⊂ T ′ as well.

Theorem Let X, Y and Z be topological spaces and f : Z → X × Y be a function from Z into
X×Y. Then f : Z → X×Y is continuous if and only if the two composite functions (coordinate
functions) π1 ◦ f : Z → X, π2 ◦ f : Z → Y are both continuous.

Proof (=⇒) If f : Z → X × Y is continuous, then π1 ◦ f and π2 ◦ f are continuous, by the
continuity of the projections π1, π2.

(⇐=) If both π1 ◦ f and π2 ◦ f are continuous, then f : Z → X × Y is continuous since for each
basic open set U × V of X × Y,

f−1(U × V ) = (π1 ◦ f)−1(U) ∩ (π2 ◦ f)−1(V ) is open in Z.

Theorem The product space X × Y is a Hausdorff space if and only if both X and Y are
Hausdorff.
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Proof (=⇒) Suppose that X × Y is Hausdorff. Given distinct points x1, x2 ∈ X, we choose a
point y ∈ Y and find disjoint basic open sets U1×V1, U2×V2 in X×Y such that (x1, y) ∈ U1×V1

and (x2, y) ∈ U2 × V2.

Then U1, U2 are disjoint open neighborhoods of x1 and x2 in X. Therefore X is a Hausdorff
space.

The argument for Y is similar.

(⇐=) Suppose that X and Y are both Hausdorff spaces. Let (x1, y1) and (x2, y2) be distinct
points of X × Y. Then either x1 ̸= x2 or y1 ̸= y2 (or both).

If x1 ̸= x2, since X is Hausdorff, there are disjoint open sets U1, U2 in X such that x1 ∈ U1 and
x2 ∈ U2. Since (x1, y1) ∈ U1 × Y, (x2, y2) ∈ U2 × Y and (U1 × Y ) ∩ (U2 × Y ) = ∅, X × Y is a
Hausdorff space.

The argument for y1 ̸= y2 is similar.

§20 The Metric Topology

Definition A metric (or distance) function on a set X is a real-valued function d : X ×X → R
defined on the Cartesian product X ×X such that for all x, y, z ∈ X:

(a) d(x, y) ≥ 0 and equality holds if and only if x = y;

(b) d(x, y) = d(y, x);

(c) d(x, y) + d(y, z) ≥ d(x, z).

Given a metric d on X and a positive number ε > 0, the set Bd(x, ε) defined by

Bd(x, ε) = {y ∈ X | d(x, y) < ε}

is called the ε-ball centered at x.

Definition If d is a metric on the set X, then the collection of all ε-balls Bd(x, ε) for x ∈ X and
ε > 0, is a basis for a topology on X, called the metric topology induced by d, and the set X
together with metric d, usually denoted (X, d), is called a metric space.

The first condition for a basis is trivial, since B(x, ε) for any ε > 0. Before checking the second
condition for a basis, we show that if y is a point of the basis element B(x, ε), then there is
a basis element B(y, δ) centered at y that is contained in B(x, ε). Define δ to be the positive
number ε−d(x, y). ThenB(y, δ) ⊂ B(x, ε) for if z ∈ B(y, δ) then d(y, z) < ε−d(x, y) from which
we conclude that

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + ε− d(x, y) = ε

Now to check the second condition for a basis, let B1 and B2 be two basis elements and let
y ∈ B1 ∩ B2. We have just shown that we can choose positive numbers δ1 and δ2 so that
B(y, δ1) ⊂ B1 and B(y, δ2) ⊂ B2. Letting δ be the smaller of δ1 and δ2, we conclude that
B(y, δ) ⊂ B1 ∩B2.

Using what we have just proved, we can rephrase the definition of the metric topology as follows:

A set U is open in the metric topology induced by d if and only if for each
y ∈ U, there is a δ > 0 such that Bd(y, δ) ⊂ U.
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x

y

δ

Figure 20.1

Clearly this condition implies that U is open. Conversely, if U is open, it contains a basis element
B = Bd(x, ε) containing y, and B in turn contains a basis elementBd(y, δ) centered at y.

Definition If X is a topological space, X is said to be metrizable if there exists a metric d on
the set X that induces the topology of X. A metric space is a metrizable space X together with
a specific metric d that gives the topology of X.

Definition Given x = (x1, . . . , xn) in Rn, we define the norm of x by the equation

∥x∥ =
(
x2
1 + · · ·+ x2

n

)1/2
;

and we define the euclidean metric (or usual metric, standard metric) d on Rn by the equation

d(x, y) = ∥x− y∥ =
[
(x1 − y1)

2 + · · ·+ (xn − yn)
2
]1/2

.

We define the square metric ρ by the equation

ρ(x, y) = max{|x1 − y1|, . . . , |xn − yn|}

The proof that d is a metric requires some work; it is probably already familiar to you. If not, a
proof is outlined in the exercises. We shall seldom have occasion to use this metric on Rn.

To show that ρ is a metric is easier. Only the triangle inequality is nontrivial. From the triangle
inequality for R it follows that for each positive integer i,

|xi − zi| ≤ |xi − yi|+ |yi − zi|.

Then by definition of ρ,

|xi − zi| ≤ |xi − yi|+ |yi − zi| ≤ ρ(x, y) + ρ(y, z).

As a result
ρ(x, y) ≤ max

1≤i≤n
|xi − zi| ≤ ρ(x, y) + ρ(y, z),

as desired

Lemma 20.2 Let d and d′ be two metrics on the set X; let T and T ′ be the topologies they
induce, respectively. Then T ′ is finer than T if and only if for each x in X and each ε > 0,
there exists a δ > 0 such that

Bd′(x, δ) ⊂ Bd(x, ε)

Page 15



Topology Chapter 2 Lecture Notes(Continued)

Proof Suppose thatT ′ is finer than T . Given the basis element Bd(x, ε) for T , there is by
Lemma 13.3 a basis element B′ for the topology T ′ such that x ∈ B′ ∈ Bd(x, ε). Within B′ we
can find a ball Bd′(x, δ) centered at x.

Conversely, suppose the δ − ε condition holds. Given a basis element B for T containing x, we
can find within B a ball Bd(x, ε) centered at x. By the given condition, there is a δ such that
Bd′(x, δ) ⊂ Bd(x, ε). Then Lemma 13.3 applies to show T ′ is finer than T .

Theorem 20.3 The topologies on Rn induced by the euclidean metric d and the square metric
ρ are the same as the product topology on Rn.

§22 The Quotient Topology

Definition Let X and Y be topological spaces; let p : X → Y be a surjective function. The
map p is said to be a quotient map, provided a subset U of Y is open in Y if and only if p−1(U)
is open in X.

Remark

� This condition is stronger than continuity.

� An equivalent condition is to require that a subset A of Y is closed in Y if and only if
p−1(A) is closed in X. Equivalence of the two conditions follows from the equation

f−1(Y \B) = X \ f−1(B).

� A subset C of X is saturated (with respect to the surjective continuous function p : X → Y )
if C contains every set p−1(y) that it intersects. Thus a subset C of X is saturated if
C = p−1(p(C)).

So, p is a quotient map if p is continuous and p maps saturated open sets of X to open sets
of Y (or saturated closed sets of X to open sets of Y ).

� A map f : X → Y is said to be an open map if for each open set U of X, the set f(U) is
open in Y. It is said to be an closed map if for each closed set A of X, the set f(A) is closed
in Y.

It follows immediately from the definition that if p : X → Y is a surjective continuous map
that is either open or closed, then p is a quotient map.

Definition If X is a space and A is a set and if p : X → A is a surjective function, then there
exists exactly one topology T on A relative to which p is a quotient map; it is called the quotient
topology induced by p.

Remark Note that T is defined by

T = {U ⊆ A | p−1(U) is open in X},

and T is a topology since

p−1(∅) = ∅ and p−1(A) = X =⇒ ∅, A ∈ T ,

p−1

(⋃
α∈J

Uα

)
=
⋃
α∈J

p−1(Uα) =⇒ if Uα ∈ T , ∀α ∈ J then
⋃
α∈J

Uα ∈ T ,

p−1

(
n⋂

i=1

Ui

)
=

n⋂
i=1

p−1(Ui) =⇒ if Ui ∈ T , ∀ 1 ≤ i ≤ n then
n⋂

i=1

Ui ∈ T .
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Theorem Let f : X → Y be an onto continuous function. If f maps open sets of X to open
sets of Y, or closed sets to closed sets, then f is a quotient map.

Proof Suppose f maps open sets to open sets.

If U is open in Y, since f is continuous, f−1(U) is open in X.

Conversely, if f−1(U) is open in X for some subset U of Y, since f is onto and f is an open
mapping, U = f(f−1(U)) is open in Y. Hence f is a quotient map.

Corollary Let f : X → Y be an onto continuous function. If X is compact and Y is Hausdorff,
then f is a quotient map.

Proof Let C be a closed subset of X. Since X is compact, f : X → Y is continuous and Y is
Hausdorff, f(C) is a compact subset and hence a closed subset of Y. This implies that f takes
closed sets to closed sets. Hence f is a quotient map.

Examples

1. Let π1 : X × Y → X be the projection map; π1 is continuous and surjective. If U × V is
a basis element for X × Y, the image set π1(U × V ) = U is open in X. It follows readily
that π1 is an open map. In general, π1 is not a closed map; the projection π1 : R× R → R
carries the closed set {(x, y) | xy = 1} onto the the nonclosed set R \ {0}, for instance.

2. Let X be the subspace [0, 1] ∪ [2, 3] of R, and let Y be the subspace [0, 2] of R. The map
p : X → Y defined by

p(x) =

{
x for x ∈ [0, 1],

x− 1 for x ∈ [2, 3]

is readily seen to be surjective, continuous, closed map. Since (1/2, 1] is open in X,
p((1/2, 1]) = (1/2, 1] is not open Y, p : X → Y is not an open map.

3. Let A = {a, b, c} be a set of three points and let p : R → A be defined by

p(x) =


a if x > 0,

b if x < 0,

c if x = 0

Then the quotient topology on A induced by π is T = {{a}, {b}, {a, b}, {a, b, c}, ∅}, p is
an open map and it is not a closed map.

Definition Let X be a topological space, and let X∗ be a partition of X into disjoint subsets
whose union is X. Let p : X → X∗ be the surjective map that carries each point of X to the
element of X∗ containing it. In the quotient topology induced by p, the space X∗ is called a
quotient space of X.

Example 4 Let X be the closed unit ball {(x, y) | x2+y2 ≤ 1} in R2, and let X∗ be the partition
of X defined as follows:

X∗ =
⋃

x2+y2<1

{(x, y)} ∪ {(x, y) | x2 + y2 = 1}.

Note that X∗ consists of all the disjoint one-point sets {(x, y)} for which x2 + y2 < 1 and the
circle subset {(x, y) | x2 + y2 = 1} of X. Typical open sets in X of the form p−1(U) are pictured
by the shaded regions in the following figure. One can show that X∗ is homeomorphic with the
unit 2-sphere S2 = {(x, y, z) | x2 + y2 + z2 = 1} ⊂ R3.
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Example 5 Let X be the rectangle [0, 1]× [0, 1] in R2. Define a partition X∗ of X as follows:

X∗ =
⋃

0<x, y<1

{(x, y)} ∪
⋃

0<x<1

{(x, 0), (x, 1)} ∪
⋃

0<y<1

{(0, y), (1, y)} ∪ {(0, 0), (0, 1), (1, 0), (1, 1)}.

There are 4 kinds of typical open sets in X of the form p−1(U) and one of them is shown in the
following figure.

This description of X∗ is just a mathematical way of pasting the edges of a rectangle together
to form a torus.

Example 6 Let R be the rectangle [0, 3]× [0, 1] in R2. Define a partition R∗ of R as follows:

R∗ =
⋃

0<x<3, 0≤y≤1

{(x, y)} ∪
⋃

0≤y≤1

{(0, y), (3, 1− y)}.

Identify the subsets of R∗ with the points of our Möbius strip M, and define the map π : R → M
by sending each point of R to the subset of the partition in which it lies.

Note that the union of two half discs in R, centers (0, y), (3, 1 − y) and of equal radius, maps
via π to an open neighborhood of p in the identification topology on M, and if we take a single
half-disc, its image in M is not a neighborhood of p and is not open, so π is not an open mapping.
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Example 7 Consider the subspace A = [0, 1] ∪ (2, 3] of R; it is a subspace of the space X =
[0, 1] ∪ [2, 3] of Example 2. Suppose that we restrict the map p of Example 2 to A. Then

q = p|A : A → [0, 2]

is continuous and surjective, but it is not a quotient map since (1, 2] is open in Y while
q−1((1, 2]) = (2, 3] is closed in A. Note that (1/2, 1] is open in A, p|A((1/2, 1]) = (1/2, 1] is
not open in Y, so p|A : A → Y is not an open map. Also note that (2, 5/2] is closed in A,
p|A((2, 5/2]) = (1, 3/2] is not closed in Y, so p|A : A → Y is not a closed map.

So, if p : X → Y is a quotient map and A is a subspace of X, then the map p′ : A → p(A)
obtained by restricting both the domain and range of p need not be a quotient map. However, it
is easy to see that if A is open in X and p is an open map, then (p′ = p|A is an open map and)
p′ is a quotient map; the same is true if both A and p are closed.

Example 8 Let Y be the subspace (R+ × R) ∪ (R × 0) of R × R; let h = π1|Y . For any subset
U of R, since

h−1(U) ∩ (R× 0) = U × 0,

h is a quotient map while h is neither open nor closed. For instance, the set

A = {(x, y) | x2 + (y − 2)2 < 1, x ≥ 0} is open

and the set
B = {(x, y) | xy = 1, x > 0} is closed in Y,

while h(A) = [0, 1) is not open and h(B) = (0,∞) is not closed in R.
Theorem Let p : X → Y be a quotient map. Let Z be a space and let g : X → Z be a continuous
function that is constant on each set p−1({y}), for y ∈ Y. Then g induces a continuous function
f : Y → Z such that f ◦ p = g.

X

Y Z

g
p

f

Proof For each y ∈ Y, since g is constant on p−1({y}), the set g(p−1({y})) is a one-point set in
Z and f(y) can be defined as

f(y) = g(p−1({y})).
So, we have defined a map f : Y → Z such that

f(p(x)) = g(x) for each x ∈ X =
⋃
y∈Y

{p−1(y)}.

Given an open set V of Z, since g is continuous and p is a quotient map,

g−1(V ) = p−1(f−1(V ))

is open in X and f−1(V ) is open in Y. This shows that f is continuous.

Theorem Let g : X → Z be a surjective continuous function. Let X∗ be the following collection
of subsets of X:

X∗ = {g−1({z}) | z ∈ Z} =
⋃
z∈Z

g−1({z}).

Give X∗ the quotient topology.
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(a) If Z is Hausdorff, then so is X∗.

(b) The map g induces a bijective continuous function f : X∗ → Z, which is a homeomorphism
if and only if g is a quotient map.

X

X∗ Z

g
p

f

Proof By the preceding theorem, g induces a continuous function f : X∗ → Z; it is clear that f
is bijective.

Suppose that f is a homeomorphism. Then both f and the projection p : X → X∗ are quotient
maps, so that g = f ◦ p is a quotient map.

Conversely, suppose that g is a quotient map. Given an open set V of X∗, since p is continuous,

g−1(f(V )) = p−1(V )

is open in X and g : X → Z is a quotient map, f(V ) is open in Z. Hence f maps open sets to
open sets, so it is a homeomorphism.

If Z is Hausdorff, then given distinct points of X∗, their images under f are distinct and thus
possess disjoint neighborhoods U and V. Then f−1(U) and f−1(V ) are disjoint neighborhoods of
the two given points of X∗.
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